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On The Fatou Inequality

Aryeh Dvoretzky

l. Introduction

. ~——> The classical Fatou inequality fff

NS

(1.1) R [ Lim X_(w)dw < lim [ X (u)dw ,

D for non-negat ive measurable functions fX‘(L}s intimately connected with

problems of convergence of random variables (r.v.).‘D

Hhe Falow s ek
-) The present paper focuses on the study of a modified form of % 1)
IS

J which has important applications in the theory of convergence of r.v.
We formulate our results in the language of probability. (Q,Z,D)

is a probability space. (F.) is a non-decreasing sequence of sub-o-

n’ nelN

algebras of F . The sequences (Xn) of r.v. are adapted to (3n) s

nelV

i.e., Xn is En-measurable for all n.

The stopping times associated with (Gn) are the mappings t: Q2 -+N
such that {t=n} = {w;t(w) =n} ¢ 3, for all n. We put 3 = {A;An {t=n}
} €3, for all n}. Xt is the r.v. (xt)(w) = Xt(w)(m), it is 3t-measurable.
A bounded stopping time (b.s.t.) is a stopping time assuming only finitely
many values. We donote by T the family of all bounded stopping times.

We use the letter E to denote expectation. The variant of (1.1)

studied in this paper is

(1.2) E lim|X | < lim E|X | .
— n — t
teT

A




(Throughout the paper lim, lim , etc. refer to the relevant index increasing
to infinity).

It is easy but not very interesting to establish the conditions for
equality in (1.1). On the other hand, W. D. Sudderth [7] showed that if
the stopping times in (1.2) are not restricted to be bounded, then the
inequality reduced to an equality. (The proof in [7] relies on a martingale
convergence theorem; the result can also be easily obtained from Lemma 4.1
of the present paper).

It is, however, the bounded stopping times that play a major part in
various generalizations of the theory of martingales. The pioneering work
in this connection is due to J. R. Baxter [2] and D. G. Austin, G. A. Edgar
and A. Ionescu Tulcea (= A. Bellow) [1].

All stopping times considered throughout the paper are bounded. A

detailed study of the excess of the right side of (1.2) over the left side

is the core of the present paper.

The Fatou discrepancy is the set function given by
(1.3) lim 1-:|xt|1A - E limlxnllA ,

where 1A (as always in the paper) denotes the indicator of the set A ,

It plays a central role in the present study.

For simplicity of statements we make the following assumptions:

Al. 3 =0(G, i.e., the o-algebra F 1is generated by the algebra G

where G = U F .
neN n

A2. 1lim|X | is almost surely (a.s.) finite, i.e., P(Lim[X |<=) = 1.

The second assumption is equivalent to the right side of (1.2) being

o-finite over G, 1i.e., to the existence of sets A ¢ G with




b

oz ki, -2

P(A) arbitrarily close to 1 for which E lim E[Xt|1A < ®» , That this
condition implies A2 follows from (1.2), the implication in the other
direction is by a standard argument in the theory of stopping times (used
also in the proof of Lemma 3.2).

In section 2 , we consider the set function u¥*(A) = llE-ElxtllA R
(Ae G) , show that it is finitely additive and introduce through u* a
measure u on J&. In the next section we define, for Ae¢ G, a set
function ¢(A) = u*(A) - uo(A) , where u, 1is the absolutely continuous
part of u relative to P , and show (Theorem 3.1) that it 1is the Fatou
discrepancy (1.3). The fact that ¢ dwells on small sets (Lemma 3.1) is
fundamental.

Whereas in sections 2 and 3 we consider only the absolute values
|x | of the r.v. X , we turn in 4 to the r.v. themselves and their
possible limits. We denote by C the set of r.v. which are pointwise
limits of Kn and by ¢ the subset of integrable r.v. in C. The main
result here is (Theorem 4.1) 1lim E|Xt-Y| = ¢(Q) + p(Y,C) for all
integrable r.v. Y where op(Y,C) 1is the Ll distance between Y and C.
This yields (Corollary 4.1) a characterization of C (quite different from
that given by A. Bellow [4] in terms-of sub-martingqles). We draw attention
to a useful approximation result (Lemma 4.1).

In section 5 we consider simultaneous approximations. The principal
result here (Theorem 5.1) is that we can associate with every Y¢C a
sequence of bounded stopping times tn(Y) such that th(Y) +Y a.s. and,

moreover, if Y-Z 1is integrable then th(Y) - th(z) +Y-2 in L1 norm.

Results of this nature were proved in [5], [3) and [4] (indeed they are the

key to the proof of the amart convergence theorem). The main point here is




not in weakening the assumptions and extending the conclusion but in having
the same sequence tn(Y) for all 2.

Section 6 introduces a finitely additive real-valued set function é
on (G having the property (Theorem 6.1) that there is associated with every

Y<C a sequence of bounded stopping times tn(Y) such that, if 1lim E[th

m
2 A1$(Ai) for every simple r.v.

<o we have E X V > EYV +
Y
tn(Y) 15

m
ve ] 2 ) V+ E(Y-2)V for

(Ais G). In particular, E(
i=]

1
1A’i

xti(Y) - xtj(Z)
all Y, Z<Z when i,j » » independently of one another (unlike the situa-
tion in the preceding paragraph).

Except in the last section, only real-valued r.v. are considered. In
7 the results are extended to r.v. assuming values in a Banach space. Those
of 6 carry through to finite dimensional Banach spaces;all other results
remain valid (with minor variations) in infinitely dimensional Banach spaces.

We use the letters t,s,t to denote bounded stopping times and X,Y,Z,V

to represent random variables.

2. The set function p* and the measure u .

Definition 2.1. We define a set function u*(A) on G by

— ——— — —

(2.1) u*(A) = lim E|X |1, , (Ac G) .




We recall that (2.1) is equivalent to the following statement. There

exists a sequence (tn)neN of bounded stopping times increasing to

infinity such that

(2.2) mE|X |1, = v*Q) ,
th A
while for all sequences (sn)nelv of b.s.t. with s, T ° we have
lim E[Xs llA > u*() . u* 1is a monotone set function from G to [o,=].
n

When it is necessary to exhibit the dependence of u* on the sequence
X~ we shall write u*(-,(xn)) . Similarly for u,...,¢ which will be

introduced later.

Lemma 2.1. u* is finitely additive on G, i.e.,

(2.3) y*(AuB) = p*) + p*(®B)

for disjoint A,B € G .

Proof. Let L, > be b.s.t. for which (2.2) holds with A replaced

by AuB . Then

v
-
99
=]

(2.4) w*(AuB) _ElxtnllA + lm E[X [1

n

= % *
2 LLEE"‘:“A*HEE'Xc“B u*(A) + u*(B) .

On the other hand, let Ac 3k and tn + o satisfy (2.2) and s, =

be b.s.t. satisfying E|Xs IlB + y*(B). Assume further snzk, tnzk for
n

all n. Putting t_=t_ for we A and 1_=38_ for wf A
n n n n




we have
’ * -
©2.5) u (AuB) s 1im E|xT |1Au g = lim EIXt |1A + lim Elxs llB
n n n
= @) +u* @) .
Together with (2.4) this yields (2.3). g

The following easy result will be useful.

Lemma 2.2. If u*(A) <~ and t, > = are bounded stopping times

satisfying (2.2) then

= . *
(2.6) lim E'th|ls u*(B) ,

holds for every B ¢ G with BcA .

Proof. Otherwise, since u*(B) < w*(A) < » , we would have

1im 15|xt llB >u*(B) . Taking C = A\ B we have, by definition,
n

lim EIXt |1C > y*(C) . Combining the two relations we obtain
n

~ 1lim Elxt llA > u*(B) + u*c) = u*a) contradicting (2.6). Q
n

p* may not be o - additive on G (see Remark 2.1). We can, however,

derive in the standard way a o~ additive function.

For every A € G we put

* .
2.7) u(A) = inf | Y ow (A); Ac UN A

A G,nelN .
neN ne > o€ ’

n

- e . e




Since u* is monotone we may confine (2.7) to countable partitions of

A into sets Atl € G. u* is a monotone function from G to [o,=].
Clearly
(2.8) u(a) s w*(a) , (A ).

Lemma 2.3. u 1is countably additive on G .

Proof. Let A,B ¢ G be disjoint and C = AyB . Since each partition

(Cn)neN of C corresponds to the partitions (An Cn) and (Bncn) of A

and B and vice versa the finite additivity of u follows at once from that
of u* .

We have to show that if Ane G(neN) are disjoint and A = UAne G
then

(2.9) w(UAD) = § ua) .

Since p 1is finitely additive and monotone the left side of (2.9) is 2 the
right side. Thus it remains to show that w(UA ) = ¥ u(An) and this only
when the right side is finite. Let ¢ > 0 be given and let, for every n ,

A .(jel) be a partition of A_ into sets of G satisfying 2 ¥
n,j n jel n,j

(j,ne N), constitute a countable partition of A

) <

n
u(a) +€/2° . Then An,j’

) <Tu@) + . O

n

and § u*(a
jon 7

»J

Since, by (2.8) and Assumption A2, y is o- finite on (G 1t extends

uniquely to a measure on 3 = g((). We denote this measure by the same letter

H .




Definition 2.2. u is the measure induced on JF by (2.7).

Remarks, 2.1. 1* need not be countably additive on G . Thus for

—n - =
Q = (0,1},P the lebesgue measure, Xn =2 1(0’2 n] and sn c(xl,...,xn),

-n+l

we have u*(An) =0 for all n but u*(Q) = u*(UAn) = 1, where A = 2™",2 1.

2.2. As seen from the proof of Lemma 2.1, lim ElxtllAuB 2 lim ElxtllA +

lim E|XtilB for all disjoint measurable A and B (not necessarily in
G) . Moreover, equality holds if either A ¢ G or B ¢ G.
If, however, neither A nor B are in (G there may occur a sharp

- !
inequality. Indeed, taking in the preceding example A = U(2 (2n)., ]

and B as its complement, we have lim E thA = lim E thB =0 but

W*(@) = UmE X =1.

2.3. For measurable A # G we need not have u(A) < lim ElxcllA
as in (2.8). Indeed, modify the example in Remark 2.1 through replacing

Q =(0,1] by Q = [0,1]. Then u({0}) =1 .

3. The set functions ¢,A and the measures Haoky -

Since u is o- finite it can be decomposed according to Lebesgue.

Definition 3.1. Mo and v, are, respectively, the absolutely con-

tinuous and singular components of the measure u relative to P .

uo and ul are, of course, defined for all measurable sets. The
following definition introduces a set function on G which occupies a

central position in the present paper.

Definition 3.2. The Fatou discrepancy of the sequence of random

variables (X ) relative to the o-fields (3) 1is given by




(3.1) ¢(a) = u*a) - uo(A) , (A= @),

where, in case uO(A) = » , this is to be interpreted as sup{¢(B);BcA,

Be G, uO(B) < w},

We put
(3.2) A(A) = u*(A) - u(a) , (A G) ,

where again, if u(A) = » , this is to be interpreted as above. Clearly

(3.3 ¢ =8 +u .

A and ¢ are finitely additive (on their domain of definition G) ,
One could loosely describe A and W, as the dissipative and singular
components, respectively, of u* .

It follows from Theorem 3.1 that o depends only on the sequence
(Xn) and not on the filtration (Sn) . It then follows from (3.1) that
any two filtrations which yield the same value of u*(A) will give also
the same value of ¢(A). Remark 3.1. will point out that this is not true

k for A(A) or ul(A) . This is the reason why it is not A& or My but

their sum (3.3) that figures prominently in our results.

Theorem 3.1. We have for all measurable sets

uy(a) = E lim|x |1 (Ac3) .

A ’




The following result is the key to the proof of Theorem 3.1.

Lemma 3.1. ¢ dwells on small sets, i.e., for every € > 0 there

exists A ¢ G satisfying

(3.5) P(A) > 1-¢ , o(A) < ¢

Proof. (This result is equivalent to the apparently more general
statement: given B ¢ G and e€>0 there exists a set AcB, Ac¢B such
that P(A) > P(B) - ¢ and ¢(A) < €.) Since by Assumption A2, Q contains
sets of G with probability arbitrarily close to 1 with finite u*

it is enough to prove (3.5) for the case u*(Q) < = . Let An(ns N) be a

m
partition of Q into sets of G for which Zu*(An) < u(Q) +€/2. Then A4(UA) =
1

* m
n (VA ) - u(ﬁA ) <e/2 for all me N and P(BA )> 1l=-¢/2 for large m .
[ n L ® Lo

Hence there exists A'< G with P(A') > 1 - ¢/2 and A(A') < €/2.

Similarly, since LP and F = g(G) , there exists A" ¢ G with

"1
P(A") > 1 - ¢/2 and ul(A") <ef2. A= A'"nA" satisfies (3.5). a
Lemma 3.2. For every €>0 and k<N there exists A< G and a

bounded stopping time t>k such that
(3.6) P(A) > 1 -¢, Elxt|1A < E 11m|xn|1A +¢e

Proof. Let A be the set described in the preceding Lemma with ¢

replaced by €/4. We may assume u*(A) < . Since is absolutely .

o
continuous and uo(A) < o there exists & > 0 such that uo(B) < el&

10




for every B < A with P(B) < § . Then also u*(B) = ug(B) + ¢(B) < ¢/ 2.
Let Y be a simple (i.e., assuming only finitely many values) (G- mea-
surable r.v. with P(lim xn <Y < lim Xn +e/4) >1-68. Y |is 3m-measurable
for some m and we may take m>k, Let the b.s.t, s>m be such that
P(Ixsl <Y¥)>1-6. Let C = {IXsl <Y} and D be its complement. Let

the b.s.t. t1>s be such that E|XT|1 < w*(AnD) + e/4 < 3e/4 .

AnD
Put t = le + rlD , then

E|xt|1A =E[X 1, .+ E[X [1,.p < EIY[1, o+ 3e/4

AnC

< E lim{X [1, + ¢ . O

Proof of Theorem 3.1. As remarked in the introduction lim[anlA

is finite a.s. and both sides of (3.4) are o-finite measures on & = o(G).
It suffices therefore to prove the assertion for Ae ¢ with p*(A) <= .
Without loss of generality we may take A =2 and assume uo(ﬂ) < w
E lim|X | <= .
=——'"n
Let €>0 be given, choose Ae¢ G satisfying (3.5) and denote its

complement by B, Then E ;_i_xp_|xn| =E lim [X |1, + E lim{X |1, < u*(a) +
E lim|X |Lp = uy(A) + ¢(A) +E Lim[X |1y < uy(R) + ¢ +E Lim(X |1 . Since

limlxnl is integrable letting ¢ + 0 we obtain
(3.6) E um[xnl S uy(@) .

For the set A of Lemma 3.2 we have u*(A) < E 1im|Xn| + ¢ . Denoting

by B the complement of A we have u,(2) = ug(A) + u,(B) < E limlxn|+ €+
uO(B) . Letting € - 0 we obtain the reverse of inequality (3.6). O

11




Theorem 3.2. The sign of equality holds in the Fatou inequality (1.2)

E limlxnl s lim E|Xt| ,

if and only if ¢(Q) =0 .

The following result will be useful in the next section.

Lemma 3.3. Let (_in), ne N be a sequence of random variables adapted

to (F)) and put T(:) = u*(+,(X)),0(-) = F(-, (X)) ete. If ::lgllinl- x, 1

is integrable then ¢ = ¢.

Proof. Putting Y = sup| ﬁ; - !Xn|| we note that the set function

—k *
V=1u" - U satisfies |v(A)] < EYl, for AcG. Since v is finitely

additive it follows that it is countably additive and hence (extends to) a

signed absolutely continous measure on & . From Definition 2.1 it follows

at once that W =u + v, thus A =4 . Since v is absolutely continuous

the singular parts of u and U are the same. Hence ﬁi =M . O
Remarks 3.1. In the example considered in Remark 2.3 we have ul(Q) =1,

A(Q) = 0. If we replace 3 = o(xl,...,xn) by gn = c({O},Xl,...,Xn) we

will have u,(Q) =0, 4(2) = 1.

3.2. Let @ = [0,1], P be the lebesgue measure and sn be the algebra

zn

generated by ((1-1)/2%, 1/2"), 1=1,...,2" and let X = 2" ¥ 1, where
i=]l “{,n

Ai n " (1/2n - l/22n, i/2n). Then Xn + 0 a.s. but u and Ho coincide
’

with the Lebesgue measure. Here, of course, Xn is not adapted to 3“ , thus

exhibiting the necessity of this requirement for the validity of our theorems.




R

3.3. It follows from Theorem 3.1 and Lemma 2.2 that if u*(g) <
' *
and the b.s.t. t -« satisfy letn| + u*(Q) then E|Xth|1A + E limlxnllA +
¢(A) for every A< G, Hence, even when u*(Q) = » , there exists a
sequence of b.s.t. T > = such that EIXTnllA > E li.ml)(“|1A + ¢(A) holds

for every Ac¢ G .

4. The cluster set.

Until now, we have considered only the absolute value lxnl of the

r.v. Xn . From now on we shall be concerned with the r.v. themselves.

Definition 4.1. The cluster set C =E(Xn) of the sequence of random

variables (xn)neN is the set of random variables X which are a.s.

pointwise limits of the random variables Xn’ i.e., which satisfy

(4.1) P(lim[x - X| =0) =1 .

C 1is the subset of C consisting of the integrable random variables

in the cluster set, i.e., C = Cn Ll(Q,.'I,P) .

— —— —— e ———

¢ is a closed set in the metric space L, = Ll(Q,ZF,P) . The L

1
distance from an integrable r.v. Y to (¢ 1is given by op(Y,C) = -

1

inf{E|Y-X|; X< C} . Unless C is empty there exists X'e¢ C for which
the infimum is achieved.

If Y<C(X) then, obviously, [tlecClx_[). Conversely, if Y 'é(lxnl)
there exists Ze C(X ) with |z| = Y. 1Indged, there exist b.s.t. t ~+ =
for which |Xt | » Y (this is a well-known result, see e.g. [1]; it also

n

follows from Lemma 4.1). We may take Z = Y on {lim xtn >0} and Z = -Y

otherwise.

13




It follows from this observation that if X'e¢C and E|X'-Y| = p(Y,C)

then P(lim|X -¥| = |X'-¥|) =1.

E(Xn) is not empty since 1lim an € 'é(lxnl) . Also, C 1is not

empty if and only 1if

(4.2) E 1_12|xn| <w,

A special case of the following approximation result was used in the

proof of Theorem 3.1.

Lemma 4.1. For every e > 0 there exists a set Ac G with P(A) > 1-¢

such that for every Y« C there exist arbitrarily large bounding stopping

times t satisfying

4.3) Elxt-YllA <e.

If YeC there exist sequences of (G-measurable set An and bounded

A
n on

stopping times t -~ = such that X 1, +Y in L;-norm.

Proof. The first part is a restatement of Lemma 3,2 for the sequence
(xn- Y) . The second part follows upon denoting by tn and An a b.s.t. and

set satisfying (4.3) with ¢ =1/n .

Theorem 4.1. If Y 1is an integrable random variable then

(4.4) 1im Elxt- Y| = ¢(Q) + o(Y,C) .

14




Proof. By Lemma 3.3 the ¢ corresponding to the sequence of r.v.
(xn- Y) 1s the same as that corresponding to the sequence (Xn).

Assume first C=z @ , then we have by Theorem 3.1 lim E[Xt- Y[ = ¢(R) +
E _1_19|xn- YI and, as remarked above, p(Y,) equals the second summand on
the right,

It remains to check that if (4.2) fails then lim Elxt- Y| 2 1lim Elxtl -
E|Y| = = . 0

Corollary 4.1. }_E Y _13 an integrable random variable then

(4.5) _]._:[._gElXt- Y| 2 ¢() ,
and if
(4.6) lim B|X - Y| <=,

equality occurs in (4.5) when and only when YeC .

The following is an immediate extension of Theorem 4.1. (We recall

that Assumption A2 implies C # @) .

Corollary 4.2. Let Z¢C and denote by C, the set of integrable

random variables X for which Z + X ¢ C . Then, for every integrable

random variable Y we have

%.n Lgslxt -(Z +Y)| = ¢(2,(X_-2)) + 0o(Y,C) .
n n Z

The following result is useful.




(ol 2

Lemma 4.2, If ¢(Q) <o , Y is an integrable random variable and the

bounded stopping times tn + @ satisfy

lim Elxt - Y| = ¢()
n

then Xt =+ Y in probability.
n

Proof. If the conclusion fails there exist &§>0 and a subsequence
(s)) of (t ) such that 1-:|xs - Y|1B > & for all B with P(B) > 1-§

n
and all n .

Take €<, let A be the set described in Lemma 4.1 and let B be

its complement. Then 1limE|X - Y| 2 lim E[X_ - Y|1, + lim E|X_ - Y[1_ 2
- Snp - Sn A — Sn B
8§+ ¢(B) 2 ¢(Q) +8 - ¢ > ¢(Q) . 0

Remarks 4.1. Lemma 4.1 implies that every Ye¢ C is the limit in pro-

bability of a gsequence X, with L, e (This actually characterizes

n

C since a subsequence of xt will converge a.s. to Y .) This result
n

about approximation in probability is well known and has been extensively

used in the study of Amarts and related topics. It is explicitly stated

and proved in [1] and is implicit and crucial in [2].

4.2. Notice that the set A in the approximation Lemma 4.1 does not

depend on Y,

4.3. If 2,2'¢C and E|2' - Z| < = then, with the notation of Cor-
ollary 4.2, Cz., = C, thus the right side of (4.7) does not change if Z

is replaced by 2',

16




5. Simultaneous approximations.

If Y, Z2¢C and ¢(R) = 0 there exist sequences (sn), (tn) of b.s.t.
such that X -+Y , X -2 in L norm and hence also X ~-X -+»Y-2
Sn l’.n 1 Si tj

in L, norm as i,j - » independently of one another.

1
The situation is quite different when ¢(Q) > 0 . In the example of
Remark 2.1, where C consists of the one r.v. Y =0, if t and s are

any b.s.t. with min t > max s we have Elxt - Xs| >1 . Thus there can-

not exist sequences (s ), (t ) satisfying E|X  -X | > E|Y-Y| =0 as i,j
n n CH t

+ o  independently of one another. If, however, we let j=3j(i) then the

L1 approximation of Y-Z can be achieved.

Theorem 5.1. To every Y¢C there exists an increasing sequence of

bounded stopping times tn(Y), ne N, satisfying Xt 1) +Y a.s. and such
n

that for any Y,Z with E|Y - Z| < = we have

(5.1) X - X >Y-2,
cn(Y) tn(Z)

H Ll - norm.

Proof. Let An be a set having the properties described in Lemma 4.1

2
for € =1/n"°, Let kn be such that A€ ¥ and s, 2 kn be a b.s.t.

kn

satisfying (4.3) for these An and €. We may take s, > Let (rn)

n-1"

be any increasing sequence of b.s.t. satisfying T 2 kn « Put tn(Y) -

sl‘l(Y)lAn + Tn 1

B where B“ is the complement of An. Then, for any
n

Y,2<C we have E|X - X - (Y-2)|=E|X -Y - (X ..
’ e~ ¥ @) I=ElX ta(2)

E[Y-2z|1, < 2/a® +E[Y-2z|l;, + 0 since Y-Z is integrable. g
n n




A similar argument yields,

Theorem 5.2. If C 1is not empty then for every integrable Y there

exists an increasing sequence of bounded stopping times tn(Y) such that

)(t e +Y' a.s. where Y'eC is nearest (in Ll-mettic) to Y, i.e.,
n

E[Y-Y'] = o(Y,C), and

(5.2) lim E|X - (Y-2)| < o(Y,C) + p(z,C),

e " Xe (@

for all integrable random variables Y,Z.

The assertion implies that the limit in (5.2) exists.

Remarks 5.1. J. R. Baxter [3], following an extension of the Fatou inequality
by R. V. Chacon [5], proved that if 1lim zlxnl <o and Y,ZeC there exist b.s.t.

s + o satisfying Xs - }(t +Y-Z in Ll-norm, these sequences

n n

n’ tn
were, however, dependent on the pair Y,Z . (See also A. Bellow [4]).

5.2. If Y-Z 1is not integrable then, by Fatou, EIth(Y) - th(z)l + >,

S5.3. Theorems 5.1 and 5.2 can be extended to the situation considered

in Corollary 4.2.

6. A signed set function ¢ .

For simplicity of statements we assume in this section

(6.1) $(Q) <=,

18




and put X =11 L

Definition 6.1. Let, for A ¢ G,

6.2)  ot(A) = sup(lIm E(X. - X)T1
t —

; lim E|X_ - X1, = ¢(A)} ,
n A |cn X1,

(i.e., we consider only such sequences of bounded stopping times t, >

for which the condition holds). Let ¢ (A) = ¢(A) - ¢7(A) and ¢(a) =
ot - 9T,

Clearly, 0 < ¢ <¢ and [§] <.

+ - -
Lemma 6.1. ¢ , ¢ and ¢ are finitely additive on G .

Proof. It suffices to prove this for ¢+ . We remark that the sup in (6.2)
is achieved. Let A,B be disjoint with A, B¢ Gk . Let the increasing

sequences of b.s.t. (sn) and (tn) satisfy $1»t; > k and li(}(t - §)+1A -

n

+ . .
¢ (A), Elxtn - g(_llA > ¢(A) and similarly for s and B. Let T =t

on A and = s on its complement. Then Ele - X[1 ~ ¢(A) + ¢(B) =

AuB

¢(AuB) while ¢"(AuB) 2 LimE|Xx_ = X|1, o = ¢*(A) + ¢"(B). starcing

AuB
n
+ +
with b.s.t. T satisfying E(XTn - X1, » > ¢ (AuB) and Elxrn - ylAuB"
¢(AuB) we obtain (see Remark 3.3) the opposite inequality. a

We need the following strengthened and extended version of Lemma 2.2.

Lemma 6.2. If the bounded stopping times tn + o gatisfy

6.3) Bx, -0 -o'@ ., ElX -X|-e@,

n n




then, for any sequence (An) of sets with A « Zitn (ne N) we have

(6.4) E(X, -©1, -$@)~0, E|X

¢ . -X_llA -¢(An)+0.

¢} n n n

In particular E(xtn -1, - $(A) for all AcG,

Proof. We recall that (6.1) is assumed. First we show that the second
condition in (6.3) implies the second assertion in (6.4). Suppose

lim(Elxt - &IIA - ¢(An)) < 0 , then there exists ¢ > 0 and a subsequence
n n

for which E]Xt - gllA < 4>(An) - €., Without loss of generality we may
n n

assume that this inequality holds for all n . Let Bn be the complement

of A . There exists s >t satisfying Elxs - X| < ¢(Bn) +¢e/2. But

n
then, putting T, "t 1, * s, 1z wehave EIXT - X| < ¢(An) + ¢(Bn) -¢g/2 =
n n n
$(2) - €/2 which is impossible. If 1im(E|X, =~ X|1, - ¢(A))) > 0 then
n n
lim E(|xt - §|1B - ¢(Bn)) < 0 which is again impossible. This establishes

n n
the second part of (6.4).
The rest of the Lemma will follow if we establish E(Xt - }—(-)+1A - ¢+(An)
n n

+
+ 0., Suppose, E(xt - §)+1A > ¢ (An) + ¢ then we can construct a b.s.t.
n n

t_ for which E(X. - X" > ¢T(2) +¢/2 and E|X. - X| <E|x_ - X1
n T - T = t ='"A
n n n
+ o(Bn) + 1/n which leads to a contradiction. The case li.m(l-:(xt - 1(_)+1A -
n n

¢+(An)) <0 1is treated by considering the sequence (Bn) . 0

Lemma 6.3. If Y « C there exists an increasing sequence of bounded

stopping times tn(Y) such that X, y * Y a.s. and

n(Y




R

for every A e Q.

Proof. Let An ¢ G be such that P(An) >1 - 1/n2 and ¢(An) <1l/n
(see Lemma 3.1). Let Bn ¢ G be a subset of A and sn(Y) be a b.s.t. {

such that P(B ) > 1 - 2/n2 and E|X - Y|, <1l/n (see Lemma 4.1).
n sn(Y) B

Let (tn) be a sequence of b.s.t. satisfying (6.3). We may assume that

(s“(Y)) and (tn) are increasing and that An’ Bn € ssn(Y) n Stn . Put

tn(Y) = sn(Y)an + tnlCn where Cn is the complement of Bn . Then

th(Y) +Y a.s. and

+ E(Y-X1

AnB AnC
n n

(6.6) E(th(Y) - Y)lA = E(Xs“(Y) -1

+ E(Xt - 'X_)lAnc .
n n

The first two summands - 0. Also &(Ancn) = $(A) - 5(Aan) , but |$(Aan)| <
¢(Aan) < ¢(An) . Thus ¢(AnCn) + $(A) and hence, by the preceding L-uma,
the last summand in (6.6) - $(A) . g

An immediate consequence is

Theorem 6.1. If 1lim Elxtl < » there exists for every Y ¢ C an

increasing sequence of bounded stopping times t“(Y) such that

V-EYV + § A 6(A) ,
tn(y) i=1 1 i

(6.7) E X




for every simple (- measurable random variable V = z Al (Ai€ G, i=1,...m).

j=1 1Ay

Corollary 6.1. For all Y, Z¢ C and every simple (G-measurable random

variable V

lim E(X X (Z))V = E(Y~-Z)V ,

e, (¥) - J

as i,j + » independently of one another.

Remarks 6.1. There are, in general, many additive set functions §

for which Theorem 6.1 holds. E.g. if we replace lim by lim in (6.2) we

obtain another, usually different , ¢ with the desired properties.

6.2. From the proof of Lemma 6.3 it is seen that the b.s.t. tn(Y)
may be assumed to have simultaneously the properties described in Theorem 5.1

and Theorem 6.1.

6.3. Theorem 6.1 is stated for the case that C ig not empty. If it

is empty similar results hold for Cz with 2¢C . (See Corollary 4.2

and Remark 4.3).

7. Banach space valued random variables.

In this section we consider vector r.v. Q + S where S is a fixed
Banach space (not necessarily over the reals).

Obviously nothing has to be changed in sections 2 and 3 beyond replacing
the absolute value || by the norm ||-|| of S. Similarly C and C are

defined by (4.1) with ||Xn-X|| replacing |xn-x| . C is a closed set

in the relevant L, space (of r.v. Y with E||Y|]| < «) and o(Y,C) 1s

defined as before.




At this stage there does occur an important difference. The fact that
E(||Xn||) is not empty does not imply that E(Xn) $ §. Indeed, every
infinite dimensional Banach space contains points e ne N, of unit norm

such that Hei - ejll > 1 whenever i#j . Then E(en) = ¢ whereas
C(llenll) is the constant 1. This fact affects some of the results in

sections 4 and 5.

The approximation Lemma 4.1 remains valid (same proof).

Theorem 4.1 has to be modified, but the Corollary 4.1 is not affected.

Thus we have

Theorem 7.1. For all integrable random variables Y we have

(7.1 6(Q) =< Hﬂﬁllxt - Y|| < ¢(2) + o(Y,C),

and if ¢(R) < » the first inequality becomes an equality when, and only

when, Y= C,

Proof. The first inequality (7.1) follows from ¢(-,(xn)) = ¢(-,(Xn-Y)) .
The second inequality has to be proved only when C # 8. If XcC then

Lin £[|x, - Y|| = Lim EC|[X,~X]| + |[X=¥]]) = L E[[x,~X|| + o(x,1) but,

by Lemma 4.1, ;_1_“1r:||xt - X|| £ ¢() .
It remains to prove that if ¢(Q) < » then equality on the left implies

YeC. If Y ¢ C then there exists e>0 such that Ellxt-YlllA > €

for every A with P(A) > 1 - ¢ and large t. Let A be the set described

in Lemma 3.1 with ¢ replaced by €/2 and denote by B its complement.

Then yﬂznxt-yl[ 2 1—12”"‘:“"”13 “’MEHXt-YHlA 2 ¢(B) + ¢ >

() +¢/2.




Corollary 4.2 has to be modified in the same way as Theorem 4.1.
Lemma 4.2 remains valid.

The results on simultaneous approximation (Theorems 5.1 and 5.2) remain
unchanged.

The few reformulations of the results of sections 4 and 5 which were
necessary in the general case are not needed when S is finite dimensional.

It is not difficult to prove that for finite dimensional Banach spaces
S, if Y « E(llxnfl) then there exists Ze E(Xn) with ||z]|| =Y.

Moreover, if S is a finite dimensional Banach space the results of

section 6 also carry through.

Theorem 7.2. Let S be a finite dimensional Banach space and Xn

be S-valued random variables. If lim E||Xt|| <~ then C(X ) is mot

empty. Furthermore, there exists a finitely additive S-valued function

$ with domain G and for every YeC there exists a sequence of increas-

ing bounded stopping times tn(Y) such that (6.7) holds for every scalar

m
valued simple random variable V = ) AilA (Aie G, i=1,...,m).
i=1 i

The proof being similar to that of Theorem 6.1 we just show how to
construct a suitable ¢ . For brevity we do this for two-dimensional S

’ v "
over the reals. Let (el,ez) be a basis of S and 'Xn = Xn e, + Xn e,

v " ' "
with real Xn, Xn . Let X el + X e2

e C be such that ||X'el + X"e2[|

lim Ellxtll = X. Define, for Ac G,

—_— ' '
¢, (A) = sup{lim Elxtn - X [1, 51m 1-:||xtn - §||1A = 6(a)},

n 7"
then let ¢2(A) = sup{limlxt - X |3 I,II} where I is the condition used
n ] t
in defining ¢, and II is the condition lim Elxt - X |1A =¢,(8) . (If
n

24




P g T e

S 1is stricly convex this step is not necessary since then ¢2 is

+ —_— ' [
determined by ¢ and ¢l.) Define ¢1(A) = sup{lim E(Xt -X )+;I,II}
n

+ ~ -~ ~
and similarl A) . Let = 207 - i= ¢ =
Yy 6,(4) et ¢ =2¢; - ¢, (1=1,2). ¢ 618 + 9,8,
will have the required properties.

Remark 7.1. Theorem 7.2 fails in infinitely dimensional S, even
if we add the requirement that C # . Indeed, let e, be points in S
with ||en||=1 and Hei-ejHZl for i=zj. Let @ = [0,1], P be

n

and F = 0(X y...,X ).
n n

the Lebesgue measure, Xn =2 1"

e, l[O,Z_n]
Then ¢ 1is not empty but EXt, t + o , has no limit point in the
norm topology. It is possible to obtain results similar to the above only

if one either looks at weaker forms of convergence or imposes restrictions

on the sequence Xn.
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